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Introduction

While free energy functions are often described as the capacity of a system

to do work, in application, these functions provide information on 

biological, thermodynamic, or chemical processes [1]. An important 

example is the perturbations related to mutations of superoxide dismutase 1, 

which is suspected to be related to the development of ALS disease [2]. 

Sampling and reconstruction of these functions therefore can make profound 

impacts on several areas of research. In this project, we are attempting to 

simplify the process of approximating such functions by allowing machine 

learning to construct the equations. We use the Mueller-Brown potential as a 

benchmark example of this process.

Direct approximation
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Figure 1: Mueller-Brown potential reconstruction using direct approximation with a TensorFlow neural 

network. In red is the original Mueller-Brown potential, and the black dashed line is the approximation 

using TensorFlow. Error = 500, calculated using equation (1). Neural network has a width of 4, depth 

of 300, 1 epoch of runtime, 40,000 x,y pairs simulated, with an Adam learning rate of .001. 

Figure 2: Sampling of the true Mueller-Brown potential using the artificial temperature

trajectory. Origin point is (x0,y0) = (1,0), timestep 10^-5, 4e4 steps, friction coefficient 1, and 

temperature 17e23 K. Instead of tens of thousands of steps, every 200th step is displayed for 

simplicity.
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Sampling methods

,

Numerical challanges

The first part of this project consisted of experimentation with the possibility 

that free energy functions may be approximated with neural networks. We 

begin with some input data, usually random numbers in -2 ≤ x ≤ 1 and -0.25 

≤ y ≤ 1.75 (see figures 1 and 2). We then create a neural network consisting 

of 3 to 4 hidden layers with depths of 300 neurons and utilize a gradient loss 

function defined by:

We use a gradient for the loss function to achieve maximum information in 

the loss function (as the gradient provides information on magnitude and 

direction at the sample point).

Within the neural network, we make use of the following customized 

activation function:

With B = 1.

Despite some success with this method, there remains the issue of sampling.

If in the learning process, the network receives samples from the strongly

positive region, the function will not be learned correctly. Therefore, we 

must implement a better sampling method to receive accurate results 

dependably.

In the use of traditional methods, such as radial basis functions, 

approximating the Mueller-Brown potential works quite well, with 

Maragliano and Vanden-Eijnden et. Al. citing an error of 4.2e-3. 

However, in mapping a more complicated, higher dimensional function such

as Alanine Depeptide in four torsion angles, the mean relative error is found 

to be 0.14, nearly 100 times the error of the 3D Mueller-Brown potential.

Where machine learning can assist in this error is the fact that upgrading 

dimensionality with neural networks is quite simple and typically results in 

little changes to accuracy. In only remains to be seen how this process works 

and how to sample learning points effectively.

Figure 3: An example of a neural network for approximating a function. As mentioned previously, 

increasing dimensionality with neural networks simply implies adding samples to the input vector, so 

that an upgrade from 3D to 4D might imply changing x1,x2 to x1,x2,x3.

The main issue associated with effective sampling of a free energy function 

is how the dimensionality may be reduced. We are interested in the free 

energy minima, and with typical Langevin dynamics simulations, the 

timescale of exiting such a well is:

With gamma a friction coefficient and beta a measure of temperature. 

Maragliano and Vanden-Eijnden et. Al. propose a new set of equations

utilizing a trajectory with an artificial temperature and friction coefficient, so 

that the new timescale may be adjusted to be of order 1 [3].

The Mueller-Brown potential is a special case of this change of variables 

where the artificial temperature is the true temperature. This landscape thus 

provides an easily testable benchmark of this sampling method.
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