Introduction

- Anomalous, power-law based phenomena are ubiquitous
- Anomalous biomechanics, Figs. 1 & 2
- Eddies in turbulent flows, Fig. 3
- Anomalous diffusion in transient media

Methods

- Three methods were benchmarked with Eqn. 2, a standard FODE
- Petrov-Galerkin Spectral Method (PGSM) [2]
- Finite Difference Method (FDM) [2]
- Finite Element Method (FEM) [3]

\[\frac{RLD^\nu}{0} u(t) = f(t), \ u(0) = 0 \] (2)

- Tested with method of fabricated solution for CPU time and error,
- \(E_{L_2} = \frac{|u^{ex}(t) - u^{pp}(t)|}{|u^{ex}(t)|} \)
- Schemes are applied to anomalous Maxwell material stress-strain behavior via Eqn. 3 [1]

\[\nu RL_{0} D^\nu \epsilon(t) = \sigma(t) + G RL_{0} D^{\nu-\mu} \sigma(t) \] (3)

where \(\epsilon(t) \) and \(\sigma(t) \) are the strain and stress of the material

Results

- Fig. 4 shows a sample fit of the test benchmark function \(RL_{0} D^0.2 \mu = 1 \) \(\Gamma(6.1) \) \(\Gamma(5.9) \) using PGSM

\[RL_{0} D^0.2 \mu \Gamma(6.1) \Gamma(5.9) \] (1)

Kernel captures power law

Integration captures history

- Low CPU time and high accuracy are desired
- Benchmark criterion required to quantify computational efficacy
- Thus, we develop an assessment framework to evaluate numerical schemes
- R platform works well with large sets of data

Discussion

- Framework records evaluation criterion for schemes, listed in Fig. 5 and Table 1
- Table 2 lists insight into beneficial algorithm mechanics

Figure 5. Rate of convergence for \(RL_{0} D^0.2 \mu = 1 \) \(\Gamma(6.1) \) \(\Gamma(5.9) \)

PGSM demonstrates absolute convergence at 6 terms.

Table 1 lists CPU times required to reach \(O(10^{-5}) \) error for each method

<table>
<thead>
<tr>
<th>Method</th>
<th>(\tilde{E}{L_2}) at (N{pol} + N_el = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGSM</td>
<td>2e-15</td>
</tr>
<tr>
<td>FDM</td>
<td>6e-1</td>
</tr>
<tr>
<td>FEM</td>
<td>2e-1</td>
</tr>
</tbody>
</table>

Future Work

- Extension to fractional diffusion equation numerical schemes
- Implement data fitting performance metrics for large data sets

Figure 6. Simulations of strain, \(\epsilon(t) \), versus test stress function, \(\sigma(t) = 0.9 |v^{\nu-\mu} - 1^{\nu-\mu}| \) with \(v = 0.9, \mu = 0.7, \) and \(v = 1 \) and various \(\nu \) and \(G \)

Table 2. Key features for various methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Key Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGSM</td>
<td>Diagonal linear system</td>
</tr>
<tr>
<td>FDM</td>
<td>Generalizable form</td>
</tr>
<tr>
<td>FEM</td>
<td>Adaptive to irregularities</td>
</tr>
</tbody>
</table>

Table 3. Pros and cons for various methods

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
</table>
| PGSM | - Hard to implement
| | smooth behavior
| | - Limited to smooth
| | functions
| FDM | - Large history
| | iteration
| FEM | - High accuracy
| | unfeasible

References

Acknowledgements

Ehsan Kharazmi, Michigan State University, Department of Mechanical Engineering.

Contacts

Mohsen Zayernouri, PhD, Michigan State University, Department of Mechanical Engineering, East Lansing, MI, 48824.
Email: zayern@egr.msu.edu