
INTRODUCTION
• Catheters, lines, and tubes, collectively called lines, are 

used in a variety of medical procedures.

• Misplaced lines can cause dangerous complications.
• Radiologists examine chest radiographs (X-rays) to 

evaluate the placement of these lines. 
• Before we can evaluate lines automatically, we must 

first segment them from the image background.
• We semantically segment lines in pediatric chest 

radiographs using U-Net style, deep convolutional 
neural networks.
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Our deep learning model 
automatically highlights 

catheters, lines, and tubes
in chest X-rays.
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Figure 1: These results were obtained by training U-Net models with different encoder
backbones on 512 x 512 images. The networks were initialized with ImageNet weights, and
achieved a dice scores of a) 0.527, b) 0.524, and c) 0.551 respectively on the test dataset.
(Using a 70/15/15 train/validation/test split with n = 96)

• Annotated 96 chest radiographs containing lines to 
create binary segmentation masks.

• Replaced the U-Net model encoder path with a 
variety of backbones – deep CNN feature encoders.

• We trained the network using dice loss to solve the 
class imbalance. (~97% of pixels are background)

• Generalized Dice loss measures the overlap
between the predicted mask and the true mask.
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• n = pixel
• c = class
• yn,c = 1 if n belongs to c, 0 otherwise
• pn,c = the probability predicted by the model 

that n belongs to class c
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CONCLUSIONS
• The EfficientNet-B3 backbone outperformed both 

ResNeXt101 and ResNet50.

• Training on dice loss resulted in better predictions 
than weighted binary cross entropy loss.

• Tests using a U-Net model with Feature Pyramid 
Networks (FPN) on the decoding path performed 
worse than models with the original U-Net decoder. 

DISCUSSION

• Results could probably be improved by segmenting 
lines into individual classes for each type of line.

• A larger dataset of 200 samples should significantly 
improve results.

• Data augmentation methods could be applied to 
increase the value of the existing dataset.

• Using this segmentationmodel, new methods can be 
developed to automatically evaluate line placement 
in chest radiographs.
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a) ResNet50 b) ResNeXt101 c) EfficientNet B3

Model Dice 
Coefficient IoU (F score)

UNet-ResNet50 0.527 0.699

UNet-ResNeXt101 0.524 0.696

UNet-EfficientNetB3 0.551 0.706

FPN-ResNet50 0.498 0.676

FPN-ResNeXt101 0.492 0.675

FPN-EfficientNetB3 0.508 0.684
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