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CONCLUSIONS

« The EfficientNet-B3 backbone outperformed both
ResNeXt101 and ResNet50.

INTRODUCTION

« Catheters, lines, and tubes, collectively called lines, are
used in a variety of medical procedures.

Our deep learning model
automatically highlights

* Training on dice loss resulted in better predictions
than weighted binary cross entropy loss.
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cathete rS, I i nesy and tu bes « Tests using a U-Net model with Feature Pyramid

Networks (FPN) on the decoding path performed

i n C h eSt X' rayS _ worse than models with the original U-Net decoder.

Dice
Coefficient loU (F score)

RESULTS
a) ResNet50 b) ResNeXt101 c) EfficientNet B3

UNet-ResNet50 0.527 0.699

UNet-ResNeXt101 0.524 0.696
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 Misplaced lines can cause dangerous complications. UNet-EfficientNetB3 0.551 0.706

« Radiologists examine chest radiographs (X-rays) to FPN-ResNet50 0.498 0.676

evaluate the placement of these lines.

. . FPN-ResNeXt101 0.492 0.675
« Before we can evaluate lines automatically, we must

first segment them from the image background.

FPN-EfficientNetB3 0.508 0.684

 We semantically segment lines in pediatric chest
radiographs using U-Net style, deep convolutional
neural networks.

DISCUSSION

, * Results could probably be improved by segmenting
METHOD True line mask lines into individual classes for each type of line.

« Alarger dataset of 200 samples should significantly
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Annotated 96 chest radiographs containing lines to ¥ i T improve results.

create binary segmentation masks. -
« Data augmentation methods could be applied to

* Replaced the U-Net model encoder path with a increase the value of the existing dataset.

variety of backbones — deep CNN feature encoders.
« Using this segmentationmodel, new methods can be
developed to automatically evaluate line placement

In chest radiographs.

* We trained the network using dice loss to solve the
class imbalance. (~97% of pixels are background)
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