

INTRODUCTION

Catheters, lines, and tubes, collectively called **lines**, are • used in a variety of medical procedures.

- **Misplaced** lines can cause dangerous **complications**.
- Radiologists examine **chest radiographs** (X-rays) to evaluate the placement of these lines.
- Before we can evaluate lines automatically, we must first **segment** them from the image background.
- We semantically segment lines in pediatric chest radiographs using **U-Net style**, deep convolutional neural networks.

METHOD

- Annotated 96 chest radiographs containing lines to create binary segmentation masks.
- Replaced the U-Net model encoder path with a variety of **backbones** – deep CNN feature encoders.
- We trained the network using **dice loss** to solve the class imbalance. (~97% of pixels are background)
 - Generalized Dice loss measures the overlap between the predicted mask and the true mask.

$$1 - 2\sum_{n} \sum_{c} \frac{(y_{n,c} * p_{n,c})}{(y_{n,c} + p_{n,c})}$$

- *n* = pixel
- c = class
- $y_{n,c} = 1$ if *n* belongs to *c*, 0 otherwise
- $p_{n,c}$ = the probability predicted by the model that *n* belongs to class *c*

We acknowledge support from the iCER ACRES REU at MSU, which is funded by the National Science Foundation through grant 1560168.

Deep Learning Methods for Automatic Evaluation of Lines In Chest Radiographs

Ryan Sullivan¹, Greg Holste², Adam Alessio³ ¹Purdue University, ²Kenyon College, ³Michigan State University

Our deep learning model automatically highlights catheters, lines, and tubes in chest X-rays.

RESULTS

a) ResNet50

True line mask

b) ResNeXt101

Figure 1: These results were obtained by training U-Net models with different encoder backbones on 512 x 512 images. The networks were initialized with ImageNet weights, and achieved a dice scores of a) 0.527, b) 0.524, and c) 0.551 respectively on the test dataset. (Using a 70/15/15 train/validation/test split with n = 96)

c) EfficientNet B3

True line mask

JNIVERSITY

CONCLUSIONS

- The EfficientNet-B3 backbone outperformed both ResNeXt101 and ResNet50.
- Training on dice loss resulted in better predictions than weighted binary cross entropy loss.
- Tests using a U-Net model with Feature Pyramid Networks (FPN) on the decoding path performed worse than models with the original U-Net decoder.

Model	Dice Coefficient	IoU (F
UNet-ResNet50	0.527	0.
UNet-ResNeXt101	0.524	0.
UNet-EfficientNetB3	0.551	0.
FPN-ResNet50	0.498	0.
FPN-ResNeXt101	0.492	0.
FPN-EfficientNetB3	0.508	0.

DISCUSSION

- Results could probably be improved by segmenting lines into individual classes for each type of line.
- A larger dataset of 200 samples should significantly improve results.
- **Data augmentation** methods could be applied to increase the value of the existing dataset.
- Using this segmentation model, new methods can be developed to automatically evaluate line placement in chest radiographs.

REFERENCES

- Drozdzal, Michal, Eugene Vorontsov, Gabriel Chartrand, Samuel Kadoury, and Chris Pal. "The Importance of Skip Connections in Biomedical Image Segmentation." ArXiv:1608.04117 [Cs], August 14, 2016.
- http://arxiv.org/abs/1608.04117. • Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-Net: Convolutional Networks for Biomedical Image Segmentation." ArXiv:1505.04597 [Cs], May 18, 2015. http://arxiv.org/abs/1505.04597.

Scan this QR code for more exact information, extra figures, and omitted experiments.

