
● In order to extract proper information we need to create cuts and filter out 
unwanted data.
○ Generate a spherical data set of 50 kpc oriented at the center of our data set
○ Apply entropy criterion to the shock and cavity analysis
○ Added condition ∇· V< 0, ∇T · ∇S > 0 for shocks
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● Hot diffuse plasma [also known as intra-cluster medium (ICM)] undergoes 
radiative cooling that leads to the precipitation of cold gas from the ICM into 
the cluster core.

● The cold gas accretes onto the supermassive black hole (SMBH) located in 
the cluster’s central galaxy, fueling outbursts of powerful jets known as active 
galactic nuclei (AGN).

● The AGN outbursts compensates for the radiative cooling losses of the ICM 
by transferring the energy back into the ICM through shocks, turbulence, and 
cavities.
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● Understand how the active galactic nuclei (AGN) and supermassive black 
hole (SMBH) at the center of a galaxy cluster reheat the surrounding medium.

● Calculate what percentage of AGN energy is located in cavities, shocks, and 
turbulence using yt.

 

● Simulations created from Enzo, a multi-physics hydrodynamic simulation code
● Initial parameters based on galaxy group NGC-5044
● Three components of gravity (Dark Matter, BGG, Supermassive black holes)
● Gas initialized in hydrostatic equilibrium 

 

● We analyze our data using yt, an open source python package for analyzing 
volumetric/hydrodynamic data and extracting AMR data sets. 

● Run a time series analysis through a Data set comprised of 2 Gyr worth of 
simulated data.

   Energy Calculations 

 

Plot shows the density slice of the x-z plane of the initial state of the intra-cluster medium 
(ICM). The ICM is initialized in hydrostatic equilibrium with radiative cooling and AGN 
feedback modules switched on.

Figure 4: This graph is a slice of the x component at t = 0.5 Gyr of our 
data file ‘0050’ scaled to show center 100 kpc.

Figure 5: This graph is identical to figure 4 but has the 
entropy criterion cut regions to emphasize the cells where 
cavity bubbles are located.

Figure 2:  The above graph shows a data file created 
using the Enzo code with annotated regions of AGN 
feedback which were generated via  yt.

Figure 1:  The above image shows an overlayed 
x-ray, radio, and observational  image of AGN jets 
and the surrounding ICM in the MS0735.6+7421 
cluster.

● Following the data filtering process, we were able to calculate the cavity and 
shock energy for the simulation in separate time series.

● For every step in the time series we calculated the energy for every cell and 
added it up to get the total energies.

● Total energy of our AGN cavities and shocks, plotted with respect to time

                           

 

Figure 7: This graphs show our cavity and shock energy plotted vs time.
We see that cavity energy is higher than our shock energy and as a result, cavity 
energy may play a bigger role in heating the ICM. Also, most of the shocks are 
weak shocks as they move out past 5 kpc.

     
● The results for our energy vs time graphs are appropriate given the cyclical 

nature of AGN feedback overtime 
● We find that our cavity energy is two orders of magnitude larger than our 

shock energy
● We suspect our shock energy calculations are comprised of a max pollution 

percentage of around 10% due to turbulent ICM in the core 
● Future work would comprise of using new physics and analysis tools to 

calculate turbulence energy

 

 

Figure 6: This graph is identical to figure 4 but has the shock 
conditions implemented  to highlight  cells where shocks are 
located.
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