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Introduction

•The majority of problems in computational chemistry de-
pend upon finding the energy and forces of atomic systems:

–Drug development

–Materials research

–Battery technology

• Simulation methods must trade off the accuracy of density
functional theory (DFT) based approaches with the speed
of force field calculations.

•Machine learning methods potentially offer DFT accuracy
with substantial savings in computation time.

•We present a learning model which efficiently uses data
to concurrently predict the energy and forces of an atomic
system. The model’s design is informed by physics and has
the additional bonus of being relatively interpretable.

Fig. 1: Features prior to integration. Varying (n, `) across and j vertically.

Data Sets

We have two data sets of DFT calculations:

• 625 LiOLi molecules at various bond lengths

• 80,000 Li-Si periodic crystals at various concentrations

We’ve built our model for the simpler molecular LiOLi data
set. We hope to transition towards the more complex Li-Si
crystal structures in the future.

Fig. 2: LiOLi (left) and Li-Si (right) example systems

Mathematical Background

Since these are physical systems, our data is well behaved. That is, energy and forces are:

1. Invariant and covariant, respectively, to isometric displacements

2. Invariant to atom re-indexing

3. Continuous under deformations of atom positions

Let R be a system, a set of atoms and their positions. We would like a feature vector ~φ
which represents R, and additionally respects the physical laws above. Learning on ~φ will
be more efficient and more likely to succeed. Below is an element of ~φ:

φλ(R) =

∫
R3

 l∑
m=−l

∣∣ρR ∗ Ψm
n,l,j

∣∣2q/2

In the above equation λ = (n, `, j, q) represents paramaters, ρ~R is a pseudo electron density,
and Ψm

n,l,j is a wavelet characterized by a radial function and a spherical harmonic. [1]

We can think of a feature in the following manner: φ represents some interaction(s),
j scales size, q scales range, and (n, `) correspond to a specific electron orbital.

Learning Model

A linear regression over the features ~φ(R) returns accurate energies [2]. Since force is the
gradient of energy, we expect that the same linear regression over ∇~φ would return forces:

E ≈ Ẽ =
∑
λ

wλφλ =⇒ F = ∇E ≈ F̃ = ∇Ẽ =
∑
λ

wλ∇φλ

In this case, a linear regression is a robust and simple solution:

•Non-linearities in the the features calculation give our model a high learning capacity

•Greedy regression techniques offer sparse, interpretable results

•A simple model is easily and cheaply differentiable

We used 240 features and evaluated the test error via C = 1
M

∑M
i=1 ‖F (Ri)− F̃ (Ri)‖1
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Fig. 3: Model Flowchart

Results and Discussion

We are able generalize well while training on forces. Using
309 training points and 100 features our MAE on the testing
set is 0.51 eV/Å. This error is summed over 9 force direc-
tions, however, the model accurately predicts that 6 direction
have 0 force (within machine precision).

Fig. 4: Model Performance on LiOLi Data

The benchmark we will be working towards is a maximum
error of 0.02 eV/Å per direction. This benchmark represents
a common cutoff at which DFT simulations are said to have
converged. Currently our model has a maximum directional
error of 0.28 eV/Å on Oxygen.

Testing the model requires evaluating ill-conditioned
transformations. We are working to alleviate this issue and
believe a fix could lead to significant improvements.
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