Applying Harmonic Analysis to Predict Quantum Energies and Forces

Nikhil Shankar

ACR28

Mentors: Professors Hirn and Qi

Introduction and Motivation

- A majority of computational chemistry depends on finding Energy and Force within a system
 - Drug development
 - Materials research
 - Battery technology

Introduction and Motivation

- A majority of computational chemistry depends on finding Energy and Force within a system
 - Drug development
 - Materials research
 - Battery technology
- Simulation methods present a trade-off

Introduction and Motivation

- A majority of computational chemistry depends on finding Energy and Force within a system
 - Drug development
 - Materials research
 - Battery technology
- Simulation methods present a trade-off
- We are building an interpretable learning model that attempts to circumvent the trade-off

The Data

- 625 LiOLi molecules
- 80,000 amorphous periodic Li-Si structures at various concentrations
- Truth values calculated via VASP

Build Model on Simple Data

Eventually Generalize to Complex Data

Why Use Harmonic Analysis

Our data is well behaved, Energy and Forces are:

- 1. Invariant under isometries
- 2. Invariant under re-indexing of atoms
- 3. Continuous under small deformations

We should take advantage of these facts

Construct features $\vec{\phi}$ which respect physics

A Closer Look at $ec{\phi}$

Given a state, each feature is based on:

- 1. Atom positions and types
- 2. A specific spherical harmonic
- 3. Scaling parameters (range of interaction)

•	 ٠	-••	•••	٠
	 000		•••	• • •
•••	 • • •		• • •	• • •
	 	• • •		0 0 0

Example features prior to integration

A Closer Look at $ec{\phi}$

Given a state, each feature is based on:

- 1. Atom positions and types
- 2. A specific spherical harmonic
- 3. Scaling parameters (range of interaction)

$$\phi_{j,n,l,q}(R) = \int_{\mathbb{R}^3} \left(\sum_{m=-l}^l |\rho_R * \Psi_{j,n,l}^m|^2 \right)^{q/2}$$

•		۲		•••	0
•••	•••	•••	•••	•••	0 0 0
•••	•••	• • •		•••	• • •
		• • •	• • •		° ° °

Example features prior to integration

Energy and Forces

Regressing upon these features leads to a good energy model [1]

$$R \rightsquigarrow \vec{\phi} \rightsquigarrow \tilde{E} = \sum_{\lambda} w_{\lambda} \phi_{\lambda}$$

Energy and Forces

Regressing upon these features leads to a good energy model [1]

$$R \rightsquigarrow \vec{\phi} \rightsquigarrow \tilde{E} = \sum_{\lambda} w_{\lambda} \phi_{\lambda}$$

Note:	F = -`	∇E
-------	--------	------------

Energy and Forces

Regressing upon these features leads to a good energy model [1]

$$R \rightsquigarrow \vec{\phi} \rightsquigarrow \tilde{E} = \sum_{\lambda} w_{\lambda} \phi_{\lambda}$$

Note:
$$F = -\nabla E$$

So we hope:
$$\Tilde{F} = -
abla ilde{E} = - \sum_{\lambda} w_{\lambda}
abla \phi_{\lambda}$$

Results on LiOLi Data

LiOLi Data:

- 625 molecules
- Each force vector has 9 components with units eV/Å

We use a greedy algorithm to select the most influential features first

Future Plans

- Hope to tune model to reduce the error
 - Goal is less than 0.02eV/Angstrom/Force Direction
- Calculate energy and force concurrently
- Move towards Li-Si data set

[1] M. Hirn, S. Mallat, and N. Poilvert, Multiscale Model. Simul. 15, 827 (2017).
[2] M. Eickenberg, G. Exarchakis, M. Hirn, S. Mallat, NIPS 30, 6543 (2017).