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Introduction Run and evaluate experiments
What is electror? density? . _ . _ Inputs (electron density modeled as gaussians) are fed into a mixer, which then feeds into the model for
Electr_on density Is a measure c_)f the pr_obablllty_ of an electron t_)elng present at a spe_cmc_ location,,. training. Each input has a corresponding label. After every training iteration, the model makes a
Knowing the electrqn density gives us llnformatlon on the bonding of at(?ms, which give rse to prediction and compares the prediction against the label. Weights of the model are updated in order to
advances in drug discovery and batteries. Current methods for calculating electron density are reduce the loss.

expensive, with the best methods using density functional theory (DFT) being O(N3).
After training is finished we evaluate our model against a test set with electron densities the model did

ng can machme learning (_ML) help? _ not encounter during training. We calculate a average loss over all points in the test set. The goal of
Given a set of input output pairs, a ML algorithm can learn to produce output that resembles output hyperparameter tuning is to reduce this average loss.
from the original data set distribution. ML holds the promise for bypassing the need to do expensive
DFT computations. 0 ol —
25 e Iabel. '

What is the current state of the art? } | H ”\ R —
e Brockherde and others, obtained electron density by learning Hohenberg Kohn mapping from

gaussian potentials to electron density. 75 i |
e Their method used a kernel ridge regression (KRR) model for learning. The accuracy of KRR modes 100

IS sensitive to the selection of training data. For kernel method, there is need for a large number of e 0.4-

weights in order to capture nonlinearities.
e Related: Isola and others presented idea of “given an outline, fill it in” in their paper Image-to-Image 0 0.2-

Translation with Conditional Adversarial Networks., 175 Jj KL
e Deep learning methods have been successful with capturing nonlinearity, with the most popular v | | | | | | | |
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deep learning architectures being convolutional neural networks.

Generate the dataset Our models generate predictions that are very close to our labels. Many predictions, however, come

We use ab initio methods to calculate the electron density for 625 different configurations of a with some extra ‘dust’ of electron density in between atoms.
Lithium-Oxygen-Lithium system. These electron densities are our labels.

Image on left: View of our electron density. Electron densities are as ordered: Left is the input, middle is the label, and right is the predicted electron density. Image on right: Slice through each electron density. Blue is our input, orange is
our label, and green is our prediction.

Additionally, as evidenced by filters that our model outputs, the model learns to differentiate between
lithium and oxygen atoms without being told what the atoms are. That is, the model appears to be

From the same calculations, we look at the atoms and their positions, and model the electron density _ . .
learning the underlying chemistry of our system.

for each atom using gaussians. The resulting matrix of electron densities are our inputs.

Choose a model As a result of hyperparameter tuning using a parallelized grid search, it was realized that dropping

_ o _ _ dropout led to increased performance on the unet architecture. This observation supports existing
Inspired by pix2pix, we choose a Unet architecture. We use L2 norm loss function and batch literature,_ which recommends the removal of dropout when using batch normalization.

normalization layers. 8.0 Dropout = 0.8

Dropout = 0.5 0

Consists of a contracting path and an upsampling path. Every layer but the last performs a series of ' A 1
convolutions, batch norm, then a non linear activation function called Rectified Linear Unit (ReLU). ’

Loss 4.0 + ]
. . 4
We use Unet implementation by Akeret and others,. s '
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— > — Potential Potential as Independent Data-driven and physically Density Image on left: Scatter plot for one test image over multiple models. Each point corresponds to the loss a model outputs for the test image. We see that larger dropout and learning rate gives us lower loss. Image on right: Filter that our machine learning
— Gaussians ML models motivated bgsns ToRteEt: model is learning. Produced 26 epochs into training. During training we pass a 3 channel electron density modeled as gaussians into our model. The first channel contains modeled electron density for the oxygen atom, second and third channel contains
oG the modeled electron density for each lithium.
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- Conclusions
input 3 4 4+4 output . . . .
Ll b aal Future research endeavors will be focused towards the application of tools from optimal transport.
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S N & JF&  JFs & Long term goals are to see if a model trained on multiple sets of configurations of atoms can correctly
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Image on left: view of our Unet architecture. We feed images through a mixing layer, which then passes the images  through a series of encoders and decoders. Each encoder applies a convolution, batchnorm, ReLU, then doing a max pooling before being sent off to We wWoOou Id I |ke to aCkn OWI ed g e the SuU p po rt Of th e N S F th roug h th e g ra nt AC I - 1 560 1 68 .
the next encoder. Each decoding layer does a similar operation to what encoders do, but instead of a max pooling, we perform an upconvolution. Image on top right: Outlines the methodology of Brockherde and others. They modeled potential as gaussians, and fed
these as inputs to their KRR model. Their model then chose physically motivated basis representations based off of the data it learned from. Finally, from the representations, we get electron density. Image from “Bypassing the Kohn Sham equations via machine
learning”. Images on bottom right: The images on the left are from Google street view, and are inputs to the pix2pic model. The model outputs the images on the right, filling’ in the gaps. Images attributed to Isola and others.
. Wikipedia
Muawiz Chaudhar
y By-passing the Kohn-Sham equations with machine learning by Felix Brockherde and others.

Image-to-Image Translation with Conditional Adversarial Networks by Phillip Isola and others
Radio frequency interference mitigation using deep convolutional neural networks by Joel Akeret and others
Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift By Xiang Li and others.

Western Washington University
Chaudhm@wwu.edu
925-448-6248

Sl



