
Poster Print Size:
This poster template is 44” high by 30” wide but can be 
used to print any size poster with a similar aspect ratio.

Placeholders:
The various elements included in this poster are ones 
we often see in medical, research, and scientific 
posters. Feel free to edit, move,  add, and delete items, 
or change the layout to suit your needs. Always check 
with your conference organizer for specific 
requirements.

Image Quality:
You can place digital photos or logo art in your poster 
file by selecting the Insert, Picture command, or by 
using standard copy & paste. For best results, all 
graphic elements should be at least 150-200 pixels per 
inch in their final printed size. For instance, a 1600 x 
1200 pixel photo will usually look fine up to 8“-10” 
wide on your printed poster.

To preview the print quality of images, select a 
magnification of 100% when previewing your poster. 
This will give you a good idea of what it will look like in 
print. If you are laying out a large poster and using 
half-scale dimensions, be sure to preview your graphics 
at 200% to see them at their final printed size.

Please note that graphics from websites (such as the 
logo on your hospital's or university's home page) will 
only be 72dpi and not suitable for printing.

[This sidebar area does not print.]

Change Color Theme:
This template is designed to use the built-in color 
themes in the newer versions of PowerPoint.

To change the color theme, select the Design tab, then 
select the Colors drop-down list.

The default color theme for this template is “Office”, so 
you can always return to that after trying some of the 
alternatives.

Printing Your Poster:
Once your poster file is ready, visit 
www.genigraphics.com to order a high-quality, 
affordable poster print. Every order receives a free 
design review and we can deliver as fast as next 
business day within the US and Canada. 

Genigraphics® has been producing output from 
PowerPoint® longer than anyone in the industry; dating 
back to when we helped Microsoft® design the 
PowerPoint software. 

US and Canada:  1-800-790-4001
Email: info@genigraphics.com

[This sidebar area does not print.]

Machine Learning From Quantum Chemistry

Muawiz Chaudhary1;  Jialin Liu2; Paul Sinz2; Yue Qi2; Matthew Hirn2

1Western Washington University, 2Michigan State University

Muawiz Chaudhary
Western Washington University
Chaudhm@wwu.edu
925-448-6248

Contact
1. Wikipedia
2. By-passing the Kohn-Sham equations with machine learning by Felix Brockherde and others.
3. Image-to-Image Translation with Conditional Adversarial Networks by Phillip Isola and others
4. Radio frequency interference mitigation using deep convolutional neural networks by Joel Akeret and others
5. Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift By Xiang Li and others.

References

What is electron density?
Electron density is a measure of the probability of an electron being present at a specific location1. 
Knowing the electron density gives us information on the bonding of atoms, which give rise to 
advances in drug discovery and batteries. Current methods for calculating electron density are 
expensive, with the best methods using density functional theory (DFT) being             .

How can machine learning (ML) help?
Given a set of input output pairs, a ML algorithm can learn to produce output that resembles output 
from the original data set distribution. ML holds the promise for bypassing the need to do expensive 
DFT computations. 

What is the current state of the art?
● Brockherde and others2 obtained electron density by learning Hohenberg Kohn mapping from 

gaussian potentials to electron density.
● Their method used a kernel ridge regression (KRR) model for learning. The accuracy of KRR modes 

is sensitive to the selection of training data. For kernel method, there is need for a large number of 
weights in order to capture nonlinearities. 

● Related: Isola and others presented idea of “given an outline, fill it in” in their paper Image-to-Image 
Translation with Conditional Adversarial Networks.3

● Deep learning methods have been successful with capturing nonlinearity, with the most popular 
deep learning architectures being convolutional neural networks.  

Introduction

Methods Results

Future research endeavors will be focused towards the application of tools from optimal transport. 
Long term goals are to see if a model trained on multiple sets of configurations of atoms can correctly 
predict electron density for a new and larger system that the model has never encountered before.  

We would like to acknowledge the support of the NSF through the grant ACI-1560168.

Conclusions

Generate the dataset

Choose a model

We use ab initio methods to calculate the electron density for 625 different configurations of a 
Lithium-Oxygen-Lithium system. These electron densities are our labels.

From the same calculations, we look at the atoms and their positions, and model the electron density 
for each atom using gaussians. The resulting matrix of electron densities are our inputs.

Inspired by pix2pix, we choose a Unet architecture. We use L2 norm loss function and batch 
normalization layers. 

Consists of a contracting path and an upsampling path. Every layer but the last performs a series of 
convolutions, batch norm, then a non linear activation function called Rectified Linear Unit (ReLU).

 We use Unet implementation by Akeret and others4.

Run and evaluate experiments

Inputs (electron density modeled as gaussians) are fed into a mixer, which then feeds into the model for 
training. Each input has a corresponding label. After every training iteration, the model makes a 
prediction and compares the prediction against the label. Weights of the model are updated in order to 
reduce the loss. 

After training is finished we evaluate our model against a test set with electron densities the model did 
not encounter during training. We calculate a average loss over all points in the test set. The goal of 
hyperparameter tuning is to reduce this average loss.
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Our models generate predictions that are very close to our labels. Many predictions, however, come 
with some extra ‘dust’ of electron density in between atoms.

Additionally, as evidenced by filters that our model outputs, the model learns to differentiate between 
lithium and oxygen atoms without being told what the atoms are. That is, the model appears to be 
learning the underlying chemistry of our system. 

As a result of hyperparameter tuning using a parallelized grid search, it was realized that dropping 
dropout led to increased performance on the unet architecture. This observation supports existing 
literature5 which recommends the removal of dropout when using batch normalization. 

Image on left: view of our Unet architecture. We feed images through a mixing layer, which then passes the images  through a series of encoders and decoders. Each encoder applies a convolution, batchnorm, ReLU, then doing a max pooling before being sent off to 
the next encoder. Each decoding layer does a similar operation to what encoders do, but instead of a max pooling, we perform an upconvolution. Image on top right: Outlines the methodology of Brockherde and others. They modeled potential as gaussians, and fed 
these as inputs to their KRR model. Their model then chose physically motivated basis representations based off of the data it learned from. Finally, from the representations, we get electron density. Image from “Bypassing the Kohn Sham equations via machine 
learning”. Images on bottom right: The images on the left are from Google street view, and are inputs to the pix2pic model. The model outputs the images on the right, ‘filling’ in the gaps. Images attributed to Isola and others. 

Image on left: View of our electron density. Electron densities are as ordered: Left is the input, middle is the label, and right is the predicted electron density.  Image on right: Slice through each electron density. Blue is our input, orange is 
our label, and green is our prediction.

Image on left: Scatter plot for one test image over multiple models. Each point corresponds to the loss a model outputs for the test image. We see that larger dropout and learning rate gives us lower loss.  Image on right: Filter that our machine learning 
model is learning. Produced 26 epochs into training. During training we pass a 3 channel electron density modeled as gaussians into our model. The first channel contains modeled electron density for the oxygen atom, second and third channel contains 
the modeled electron density for each lithium.


