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The vast majority of disease-associated genetic variants are located in non-
coding regions, which represent a major portion of the human genome [1,
2]. A systematic delineation of the mechanism by which such non-coding
variants induce diseases requires accurate identification of downstream
target genes whose expression levels are regulated by these variants in
diverse tissues [1, 2]. Since these target genes are highly tissue-specific and
are usually located far away in the 1D genome, prediction has thus far

proven to be difficult. Based on our preliminary analysis, we propose to
leverage protein-protein interactions (PPI) as features to predict long-range
chromatin interactions. We will integrate PPI, transcription factor (TF)
binding, chromatin and epigenetic signals in order to train a convolutional
neural network to achieve better accuracy on long-range regulation
predictions.

Introduction

Background

Encoding protein-protein interactions in the form of an image allows their use as
features in a convolutional neural network.

We create a set of negative (unlinked) enhancer-promoter pairs controlled by
the distance distribution of an original linked set predicted from the Roadmap
Epigenomics Consortium [3]. Furthermore, we integrate known TF interactions
from [4] as well as T-cell specific TF expression data from [3] to build a one-hot
encoded protein interaction matrix (Fig. 4) which serves as a template for the
features of the network.

For each enhancer-promoter pair in the total set, we use binding data from [5] to
filter a copy of the original template matrix (Fig. 5). As a final product, for a
position i, j represented by cluster i and cluster j, we give

Methods and Materials
The model was trained for almost 350 epochs using the SWATS optimizer
detailed by [9], 60% dropout probability in the classifier, and a slow learning
rate of 10-4. Over the training set, the network achieved a loss of 0.1767 and
a prediction accuracy of 91.80% (Fig. 7, 8).

However, the model performed poorly over the validation set, achieving a
prediction accuracy of only approximately 54%. This suggests a high degree
of model overfitting, which may be due to the sparsity of our dataset and
the limited number of data points available.

In the future, implementing regularization methods such as even higher
dropout rates, weight decay/training schedulers, or other methods may
improve network performance. In addition, using transcription factor
clustering information from [5] will drastically reduce data sparsity.

Results and Conclusion

Future work consists mainly of feature extraction. Determining the most
important protein-protein interactions for enhancer-promoter linkage
classification can lead to further studies on their mechanistic effects on
chromatin folding.

One proposed solution is image occlusion, first detailed by Zeiler and Fergus
in [10], where an ‘empty’ gray filter is used to obscure a certain area of the
image at a time. By sliding the filter across the image and observing the
resultant effects on classification accuracy, the most important protein-
protein interactions for linkage classification can be determined.

Future Work

In the one-dimensional representation of the genome, an enhancer
(regulatory element) and its linked promoter can often be millions of base
pairs away (Fig. 1). Such distance makes it difficult for current biological
methods, which rely heavily on proximity, to predict their linkages.

However, in the three dimensional representation of the genome, the paired
enhancer and promoter become spatially proximal in order for mediating
transcription factor complexes to bind to both sites, bending the chromatin
in the process (Fig. 2).

We hope to build a deep learning model which uses the protein-protein

interactions between the transcription factors bound to each enhancer and
promoter to indirectly predict whether or not a given enhancer-promoter
pair is linked (Fig. 3).

In summary, we perform binary classification on a set of protein-protein
interactions for linked and unlinked enhancer-promoter pairs.

Model

Figure 1: An enhancer (blue) and its linked promoter (orange) and gene 
(green) are often millions of base pairs away in the human genome.

Figure 2: The presence of a two-protein complex (pink, red) causes the genome 
to bend in 3D. As a result, a previously distal enhancer and promoter pair 

becomes spatially proximal.

Figure 3: We use protein-protein interactions between transcription factors on a 
given enhancer and promoter as features for a convolutional neural network, 

which attempts to determine whether or not the pair are linked

Figure 6: Model implemented in PyTorch [6] and visualized through a PyTorch implementation of TensorBoard [6, 7, 8]
Figure 9: By constructing a heatmap of classification accuracy when a certain part of the image is 

occluded, we can identify the most important parts of the image for classification (blue)

Figure 4: The (399, 399) template matrix, which encodes interactions 
between transcription factors.

Figure 5: A sample filtered matrix, which is noticeably sparser than the 
original.

Figure 7: The network’s loss decreased steadily down to 0.1767 Figure 68 The network’s prediction accuracy increased steadily up to 91.80%


