

Introduction

Arsenic (As) is the most ubiquitous toxic element and is naturally present in soils. Exposure to As is linked to many diseases.¹ Globally, an estimated 150 million people are exposed to unsafe levels of As in their drinking water.²

Bacteria play a key role in the As biogeochemical cycle by facilitating As biotransformation. The toxicity and mobility of As depends on its oxidation state; arsenite (As(III)) is more toxic than arsenate (As(V)).³

Arsenic resistant genes (AsRG) are well-studied in cultivated bacteria. However, there is an increasing number of soil metagenomes available, making it possible to identify phylogenetic distribution and diversity. A more integrated understanding of bacterial AsRG sheds light on the potential impact of microbial communities on the As cycle and the risk to humans.

Objectives

- Compare AsRG in non-contaminated soil microbiomes
- Examine the phylogeny of AsRG
- Expand the known diversity of AsRG
- Analyze the abundance of AsRG

Methods

<u>**Table 1.**</u> Xander assembled full or almost full-length sequences for every gene of interest. The maximum percent identities are all greater than 95%, giving confidence to the 1

Gene aioA arxA arsM acr3 ars B arsC arsC arrA arsD rplB

Diversity and Abundance of Arsenic Resistant Genes in Soil Microbiomes Susanna Y Yeh^{1,2}, Taylor K Dunivin³, Ashley Shade^{3,4}

¹University of Maryland, College Park, ²ACRES; susyeh@umd.edu ³Department of Microbiology and Molecular Genetics, Michigan State University, ⁴Program in Ecology, Evolutionary Biology and Behavior, Michigan State University

Fig 1. The metagenomes used vary in mean *rplB* abundance. Taxonomic assignment of *rplB* is indicated by color and n refers to the number of samples in each site.

Full-Length, High-Quality Sequences Assembled

models used		Max Length	Model Length	Max Percent
e	Protein Function	Assembled (aa)	(aa)	Identity (%)
	Arsenite oxidase	815	837	97.6
	Arsenite oxidase	508	831	95.6
[Arsenite methyltransferase	217	269	96.1
	Arsenite efflux pump	351	363	100
	Arsenite efflux pump	266	430	100
glut	Arsenate reductase	116	117	100
' thio	Arsenate reductase	83	133	100
	Arsenate reductase	842	846	96.6
	Arsenite metallochaperone	124	123	100
	50S ribosomal protein L2	279	277	98.9

<u>Fig 2.</u> AsRG average abundances normalized to *rplB* vary widely among sites.

Fig 3. Maximum likelihood tree of near full-le assembled ArsC glut sequences clustered at 9 identity. Gene abundance per site is shown by colored bars. Bootstrap values greater than 0. indicated by grey circles.

Conclusion and Future Direct

OTU 0005 OTU 0632

OTU 0062

ABD39042.1 [Rhizobium loti

YP_005452223.1 [Bradyrhizobium sp.

- Diverse soil microbiomes have the genetic to transform arsenic
- The abundance and phylogeny of AsRG are within and across microbiomes
- In the future, compare results with contamination and examine beta diversity

References and Acknowledgements

- 1. Zhu, Y. et al. (2015). Ann. Review of Earth and Planetary Sci.
- 2. Brammer & Ravenscroft. (2009). Environ. Int. 3. Bahar MM, et al. (2013). Water Air Soil Poll.
- 4. Wang, Q. et al. (2015). Microbiome

GAN Market Market Bass VERS
sC glut
erogroup B]
osa] anivorans CB1190]
a] la]
se Sp245] 04]
ovorans OM5] nicum USDA 6] ıcineum HLK1]
tus] ae WSM419]
ustris CGA009] nes serotype M1]
eroni CNB-2] s S110] piont of Hydra magnipapillata j
523321]
ength 0% 7 the 60 are
tions
potential
re diverse
inated sites