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• Implement Balancing Algorithm with no 

randomness

• Investigate more pruning possibilities on the 

search

• Implement tree to work with more 
dimensions, particularly three dimensions

• Develop a faster way to cluster points in a 

bucket, and find an optimal bucket size for 

clustering, and for parallel computations

Proposed structures used in algorithms 

similar to classic k-d trees.

Four algorithms/structures implemented:

• 1. Serial incremental 

construction of classic k-d tree

• 2. Parallel search using an 

unbalanced tree

• 3. Parallel search with self-

balancing technique

• 4. Parallel search with self-

balancing and clustered 

observations into bucket

• Results are shown for first three 

techniques performed on randomly 

generated data sets of various sizes in 

different parallel settings

• All algorithms implemented in C++, with 

parallelization via OpenMP

• First three algorithms tested extensively 

and are significantly faster than brute force

• Fourth algorithm still has minor bugs, but 

clustering of “similar” points is correct

• Self-balancing technique speeds up 

significantly, but randomization can cause 

slower results (Figure 11)

• Currently, the unbalanced algorithm has 

been released in the spNNGP R package

• https://cran.rproject.org/web/packages/spN

NGP/index.html

• Various statistical models for spatial 

data rely on some form of a nearest 

neighbor calculation among observed 

spatial locations

• A brute force solution to a nearest 

neighbor calculation is easy to 

implement, but is computationally 

impractical for large data sets 

• Our focus is on efficient implementation 

of a statistical model called the Nearest 

Neighbor Gaussian Process (NNGP; 

Datta et al. 2016; Finley et al. 2017) 

that involves nearest neighbor searches 

for massive spatial data sets 

• These implementations involve k-d 

trees, a structure commonly used to 

make nearest neighbor searches more 

efficient

Our interest is in improving the constrained 

nearest neighbor search needed to implement 

a NNGP used in space and space-time 

regression models.

The NNGP provides a close approximation to 

a full Gaussian process (GP), which provides 

some ideal statistical interpolation properties 

but is computationally infeasible for large 

datasets.

Importantly the NNGP is constructed using a 

sparse representation of the GP’s precision 

matrix among observed locations, and hence 

process parameters can be estimated in a 

fraction of the time needed to estimate the 

GP's process parameters. 

NNGP is referred to as a sparsity-inducing 

Gaussian Process. This sparsity must be 

introduced in a specific manner to maintain a 

valid joint distribution, notably, an 

observation's neighbors must meet an 

ordering constraint; hence the need for the 

specialized search algorithms developed here.

Figure 1: Nearest neighbors under x-axis ordering 

constraint. Only locations to the left of the given location are 

candidate neighbors. Left figure shows five neighbors (red 

point) for location 18 (blue point) among all observations 

(open circles). Right figure same set up but for location 45 

(blue point).
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Figures 7,8: 12 cpus, 

for 15 and 30 neighbors 

respectively.

Figure 9,10: 18 cpus, 

for 15 and 30 neighbors 

respectively.

Figure 2: Brute 

force approach, 1 

cpu and 15 

neighbors.

Figure 3: 1 cpu

and 15 neighbors.

Figure 6: 6 cpus

and 30 neighbors.

Figure 4: 1 cpu

and 30 neighbors.

Figure 5: 6 cpu

and 15 neighbors.

Figure 11: Search 

time variation by cpu. 

Random balancing 

decisions leads to 

greater variability, but 

overall fast runtime

• Overall results show that the balanced 

approach is the fastest

• Serial can be faster than the unbalanced 

method if there is only 1 core

4. Results
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