
K-d Tree Search Algorithms for a Nearest Neighbor Gaussian Process Model

Alexander McKim1, Andrew Finley2

1Clemson University, Clemson, SC, 29631
2MSU Department of Forestry, East Lansing, MI, 48824

1. Introduction

2. Motivation

3. Algorithm Design/Implementation

4. Results 5 Discussion

6. Future Work

7. Acknowledgements and References

• Implement Balancing Algorithm with no

randomness

• Investigate more pruning possibilities on the

search

• Implement tree to work with more
dimensions, particularly three dimensions

• Develop a faster way to cluster points in a

bucket, and find an optimal bucket size for

clustering, and for parallel computations

Proposed structures used in algorithms

similar to classic k-d trees.

Four algorithms/structures implemented:

• 1. Serial incremental

construction of classic k-d tree

• 2. Parallel search using an

unbalanced tree

• 3. Parallel search with self-

balancing technique

• 4. Parallel search with self-

balancing and clustered

observations into bucket

• Results are shown for first three

techniques performed on randomly

generated data sets of various sizes in

different parallel settings

• All algorithms implemented in C++, with

parallelization via OpenMP

• First three algorithms tested extensively

and are significantly faster than brute force

• Fourth algorithm still has minor bugs, but

clustering of “similar” points is correct

• Self-balancing technique speeds up

significantly, but randomization can cause

slower results (Figure 11)

• Currently, the unbalanced algorithm has

been released in the spNNGP R package

• https://cran.rproject.org/web/packages/spN

NGP/index.html

• Various statistical models for spatial

data rely on some form of a nearest

neighbor calculation among observed

spatial locations

• A brute force solution to a nearest

neighbor calculation is easy to

implement, but is computationally

impractical for large data sets

• Our focus is on efficient implementation

of a statistical model called the Nearest

Neighbor Gaussian Process (NNGP;

Datta et al. 2016; Finley et al. 2017)

that involves nearest neighbor searches

for massive spatial data sets

• These implementations involve k-d

trees, a structure commonly used to

make nearest neighbor searches more

efficient

Our interest is in improving the constrained

nearest neighbor search needed to implement

a NNGP used in space and space-time

regression models.

The NNGP provides a close approximation to

a full Gaussian process (GP), which provides

some ideal statistical interpolation properties

but is computationally infeasible for large

datasets.

Importantly the NNGP is constructed using a

sparse representation of the GP’s precision

matrix among observed locations, and hence

process parameters can be estimated in a

fraction of the time needed to estimate the

GP's process parameters.

NNGP is referred to as a sparsity-inducing

Gaussian Process. This sparsity must be

introduced in a specific manner to maintain a

valid joint distribution, notably, an

observation's neighbors must meet an

ordering constraint; hence the need for the

specialized search algorithms developed here.

Figure 1: Nearest neighbors under x-axis ordering

constraint. Only locations to the left of the given location are

candidate neighbors. Left figure shows five neighbors (red

point) for location 18 (blue point) among all observations

(open circles). Right figure same set up but for location 45

(blue point).

Datta, A., S. Banerjee, A.O. Finley, and A.E. Gelfand. (2016)

Hierarchical Nearest-Neighbor Gaussian process models for large

geostatistical datasets. Journal of the American Statistical

Association, 111:800-812.

Finley, A.O., A. Datta, B.C. Cook, D.C. Morton, H.E. Andersen,

and S. Banerjee (2017) Computing Bayesian Nearest-Neighbor

Gaussian Process Models for Massive Spatial Data Sets

Figures 7,8: 12 cpus,

for 15 and 30 neighbors

respectively.

Figure 9,10: 18 cpus,

for 15 and 30 neighbors

respectively.

Figure 2: Brute

force approach, 1

cpu and 15

neighbors.

Figure 3: 1 cpu

and 15 neighbors.

Figure 6: 6 cpus

and 30 neighbors.

Figure 4: 1 cpu

and 30 neighbors.

Figure 5: 6 cpu

and 15 neighbors.

Figure 11: Search

time variation by cpu.

Random balancing

decisions leads to

greater variability, but

overall fast runtime

• Overall results show that the balanced

approach is the fastest

• Serial can be faster than the unbalanced

method if there is only 1 core

4. Results

https://cran.rproject.org/web/packages/spNNGP/index.html

