
Discussion
• Framework records evaluation criterion for 

schemes, listed in Fig. 5 and Table 1
• Table 2 lists insight into beneficial algorithm 

mechanics

Results
• Fig. 4 shows a sample fit of the test benchmark 

function 0
RL𝒟𝒟t0.2t5.1 = Γ(6.1)

Γ(5.9)
t4.9 using PGSM

• Fig. 5 shows the convergence rates for PGSM, 
FDM, and FEM
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Introduction
• Anomalous, power-law based phenomena 

are ubiquitous 
• Anomalous biomechanics, Figs. 1 & 2
• Eddies in turbulent flows, Fig. 3
• Anomalous diffusion in transient media

• Fractional derivatives capture the power-
law history of anomalous phenomena, 
shown in Eqn. 1

Kernel captures power law
Integration captures history

• Low CPU time and high accuracy are desired
• Benchmark criterion required to quantify 

computational efficacy
• Thus, we develop an assessment framework 

to evaluate numerical schemes
• R platform works well with large sets of data

Figure 2. Physical interpretation of fractional derivatives as 
interpolation operators in anomalous materials [1].
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Methods
• Three methods were benchmarked with Eqn. 2, a 

standard FODE
• Petrov-Galerkin Spectral Method (PGSM) [2]
• Finite Difference Method (FDM) [2]
• Finite Element Method (FEM) [3]

• Tested with method of fabricated solution for 
CPU time and error,

�EL2 =
uex t − uapp t

uex t
• Schemes are applied to anomalous Maxwell 

material stress-strain behavior via Eqn. 3 [1]

where ϵ t and σ t are the strain and stress of 
the material
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Figure 5. Rate of convergence for 0
RL𝒟𝒟t0.2t5.1 = Γ(6.1)

Γ(5.9)
t4.9.

PGSM demonstrates absolute convergence at 6 terms.
• Table 1 lists CPU times required to reach 
𝒪𝒪 10−5 error for each method
Table 1. Errors for various methods at Npol ∗ Nel = 6

Method �𝐄𝐄𝐋𝐋𝟐𝟐 at 𝐍𝐍𝐩𝐩𝐩𝐩𝐩𝐩 ∗ 𝐍𝐍𝐞𝐞𝐞𝐞 = 𝟔𝟔
PGSM 2e-15
FDM 6e-1
FEM 2e-1

Figure 6. Simulations of strain, ϵ(t), versus test stress function, 

σ t = σ0
t
T

ν−µ
− t

T

1+ν−µ
, with ν = 0.9, µ = 0.7, and σ0 = 1

and various 𝕍𝕍 and 𝔾𝔾

• Fig. 6. shows the simulations of fractional 
Maxwell material, Eqn. 2, using PGSM

Table 2. Key features for various methods
Method Key Feature

PGSM Diagonal linear system
FDM Generalizable form
FEM Adaptive to irregularities

Future Work
• Extension to fractional diffusion equation 

numerical schemes
• Implement data fitting performance metrics 

for large data sets
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• Table 3 lists scheme pros and cons
• Data from assessment framework supports 

intuitive pros and cons of algorithms

Figure 1. Viscoelastic behavior of human tissue.

Table 3. Pros and cons for various methods

Pros Cons
PGSM

• Captures singular & 
smooth behavior

• High, fast accuracy

• Hard to implement
• Limited to smooth 

functions
FDM

• Generalizable
• Easy to Implement

• Large history 
iteration

• High accuracy 
unfeasible

FEM
• Adaptive to 

irregular domains 
or singularities

• Large history matrix

Figure 3. Non-Brownian particle motion due to particle 
trapping in turbulent eddies.

Figure 4. Simulation of benchmark equation 

0
RL𝒟𝒟t0.2t5.1 = Γ(6.1)

Γ(5.9)
t4.9 using PGSM with 6 modes.
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