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Research Question

Previous project:

A program to compute wave functions of neutrons and protons in nuclear
scattering problems involving non-local potentials
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Motivation

@ Wave functions are ubiquitous in theoretical nuclear physics

» There is a demand for fast algorithms to compute complicated wave
functions
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Motivation

@ Wave functions are ubiquitous in theoretical nuclear physics

» There is a demand for fast algorithms to compute complicated wave
functions

@ Nuclear potentials are non-local, meaning the force on a particle at
one location depends on the force on it at all other locations

Vou(r) = /OOO V(r,r"Yu(r')dr (2)

@ During collisions, nuclei can enter multiple channels, or states.
» To account for these, we must introduce coupling into our potential

V(r)uc(r) :Z Ve (r)ue(r) (3)
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Motivation
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N
The R-matrix method!

o First, divide the problem into two regions, internal and external, at
the channel radius, a
» We ignore nuclear forces in the external region so that u®*(r) is solved
analytically

1P Descouvemont and D Baye. “The R-matrix theory”. In: Reports on Progress in
Physics 73.3 (2010), p. 036301. por: 10.1088/0034-4885/73/.3#036301.
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N
The R-matrix method!

o First, divide the problem into two regions, internal and external, at
the channel radius, a

» We ignore nuclear forces in the external region so that u®*(r) is solved
analytically

o We then relate u™(r) with u®(r)

> [(Te+ Lo+ Ec = E)dcer + Ve lullt = Lou®
CI

(Bloch-Schrodinger Eq.)

1P Descouvemont and D Baye. “The R-matrix theory”. In: Reports on Progress in
Physics 73.3 (2010), p. 036301. por: 10.1088/0034-4885/73/.3#036301.
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N
The R-matrix method

@ We expand the wave function over a finite basis

N
ul*(r) = cgpj(r) (4)
j=1
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N
The R-matrix method

@ We expand the wave function over a finite basis
. N
ul*(r) =) cges(r) (4)
j=1

@ The problem is reduced to matrix calculations

12 N

Rec'(E) = CNE ”Z_:l@i(a)(c_l)ci,c'i'@i'(a) (5)

Cci,c’i’ = <90i‘ Tc + £C + Ec - E|90i’> 5cc’ + <‘Pi| Vcc"@i’> (6)
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-
The Lagrange basis

Lagrange functions:

. Pn(2r/a—1)
(r) = ()N (L (1 — x)—————— 7
eilr) = ()M (35) Vanlt —x) (7)
where x; are the roots of Py(2x — 1)
From the Gauss-Legendre quadrature rule:
a
(wile) = [ oDt~ 5 ®)
(il V(r)lej) = V(axi)dj (9)
(@il W(r,r")|ej) = a\/Ai\jW (ax;, ax;) (10)
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Program structure (C++)

System
+ Channel radius, Energy : double Particle
Channel +C,R, U matrix
- - Target, Projectile : Particle + Protons
+E L j, m, mu, B:double - Channels : Channel[ ] _L. + Neutrons
Q—I_ - Local, Nonlocal : OpticalPotential
- Basis : LagrangeBasis
+ CoulombFunctions( radius, energy ) -
+ CentrifugalPotential( radius ) +WaveFunctions{ eutput file )
<<Interface>>
Potential
+Vra
OpticalPotential
+V : Volume Potential + getValue ( radius )
LagrangoBasis + D : Surface Potential
grang +50 : Spin Orbit Potential
+ weights [ ] + TotalPotential( radius ) =
+ abcissae [ ]

1
+ LagrangeFunction ( i, radius }

VolumePotential

NonLocalOpticalPotential

+ Range of nonlocality : double

+ TotalPotential( radius )
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Results
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Results
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Advantages, Limitations, & Future work

Advantages

@ Fast program, accounts for arbitrary number of channels, MPI
implementation

Limitations
@ Current bug with normalization

@ Does not handle closed channels

Future work
@ Applying the program in Uncertainty Quantification problems

@ Using the program to fit predictions to experimental data
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h2
Lo = 2—6(r —a) (% — %) (Bloch operator)
Hc

uc(a) = Z \/;T Rec'[aul,(a) — Boruer(a)] (R-matrix)
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