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Introduction

Objectives
Learn about fractional calculus.

Become familiar with numerical methods for

fractional partial differential equations,
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stochastic simulations, and sensitivity
analysis.

Capture the power law behavior
characteristic of anomalous diffusion.

Learn about diffusive processes from
classical, 1D heat equation to multi-
dimensional, time- and space-fractional heat
diffusion.

Investigate the nature of diffusive processes

in the brain.

Fractional Calculus

Caputo fractional derivative

ds, 0<a<l
e Uses apower law kernel.

The integral accounts for the history up to the
beginning of the process.

% Derivative
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Fractional-order PDEs provide accurate
modeling for anomalous diffusion [3].

One-Dimensional Heat Equation

Integer-Order Case
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Forward-Euler finite difference in time:
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Central finite-difference in space:
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 Generation and convection have the
largest impact on the transient term

Influence of the terms and solution for temperature
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Time-Fractional Case
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Finite-difference scheme for the Caputo derivative:
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e Asa —> 1, the fractional order recovers the
integer order.
 HY% represents the history.

Effects of varying fractional-order in the solution

Temperatures at 64 s. with Changing Alpha

Temperatures at 5 s. with Changing Alpha

X [m]

Observe that lower values of a
result in a slower relaxation
rate, and thus a higher overall
temperature at a given time
step.

We initially obslgrve a period
of “super-diffusivity” until
around 1.3s, in which the lower
values of a result in a higher
rate of diffusion.

Two-Dimensional Heat Equation

Time-fractional, 2D Case
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Initial and Boundary Conditions

T(x,y,0) =273.15+ 21 ( sin el sin "y
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Convergence Analysis

e A fabricated solution was used to
test the accuracy of the discretization
scheme:
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Future Work

* Discretize the time- and space-
fractional two-dimensional heat
equation to obtain a more
accurate model of bio-tissues.

* Simulate diffusion within the brain,
incorporating “hot spots” of
activation.

e @Generalize the two-dimensional
model into a practical three-
dimensional model.
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